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ABSTRACT: A study of the influence of climate variability on
streamflow in the southeastern United States is presented. Using a
methodology previously applied to watersheds in Australia and the
United States, a long range streamflow forecast (0 to 9 months in
advance) is developed. Persistence (i.e., the previous season’s
streamflow) and climate predictors of the previous season are used
to forecast the following season’s (winter and spring) streamflow of
the Suwannee River located in northern Florida. The winter and
spring streamflow is historically the most likely to have severe
flood events due to large scale cyclonic (frontal) storms. Results of
the analysis indicated that a strong El Nifio-Southern Oscillation
(ENSO) signal exists at various lead times to the winter and spring
streamflow of the Suwannee River. These results are based on the
high correlation values of two commonly used measurements of
ENSO strength, the Multivariate ENSO Index (MEI) and Sea Sur-
face Temperature Range 1. Using the relationships developed
between climate and streamflow, a continuous exceedance probabil-
ity forecast was developed for two Suwannee River stations. The
forecast system provided an improved forecast for ENSO years. The
ability to predict above normal (flood) or below normal (drought)
years can provide communities the necessary lead time to protect
life, property, sensitive wetlands, and endangered and threatened
species.

(KEY TERMS: streamflow forecasts; El Nifno-Southern Oscillation;
climate; sea surface temperatures; statistical analysis.)
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INTRODUCTION

The progress in monitoring global climate condi-
tions has led researchers to believe that hydrologic
variability can sometimes be well predicted based on
“teleconnections” with large scale atmospheric and

oceanic patterns. The best understood atmospheric
and oceanic patterns are the ENSO and the Pacific
Decadal Oscillation (PDO). ENSO refers to the inter-
action of the periodic large scale warming or cooling of
the central-eastern equatorial Pacific Ocean with the
Southern Oscillation, a large scale atmospheric pres-
sure pattern across the tropical Pacific. The warm
phase of ENSO is referred to as El Nifio, and the cool
phase is referred to as La Nifia.

ENSO teleconnections with precipitation and
streamflow in the southeastern United States
increase frontal precipitation in the winter of El Nifio
events and decrease frontal precipitation during La
Nina events (Ropelewski and Halpert, 1986, 1989;
Kiladis and Diaz, 1989). Florida has been identified
as a region of homogeneous response to the ENSO cli-
matic anomaly, in which mean monthly precipitation
and discharge during winter are above or below nor-
mal following the onset of the warm (El Nifio) or cold
(La Nifia) phase of ENSO, respectively (Zorn and
Waylen, 1997). Hanson and Maul (1991) report that
precipitation during El Nino events is anomalously
high during the winter and spring in Florida. Schmidt
et al. (2001) demonstrated that for winter months in
Florida, total seasonal precipitation showed strong
responses during El Nino (La Nifia) events in which
winter precipitation totals were higher (lower) than
neutral or non-ENSO winters. Streamflow, which
integrates precipitation over drainage basins,
responds to precipitation by a temporally variable
combination of runoff and ground water inputs.
Analysis of the relationship between El Nifio and
regional streamflow in the southeastern United
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TOOTLE AND PIECHOTA

States demonstrates a similar but lagged response to
the precipitation (Kahya and Dracup, 1993). Zorn and
Waylen (1997) find wintertime responses in their
analyses of mean monthly streamflow and ENSO in
north central Florida, with lags of one to two months
between the onset of ENSO and the subsequent
streamflow. The winter/spring peak discharge tends
to be higher, on average, than the summer peak dis-
charge due to lower evapotranspiration losses
(Waylen, 1991). Sun and Furbish (1997) examine
annual precipitation and river discharge patterns in
Florida in response to ENSO and find wet conditions
and higher stream discharge in El Nifio years and dry
conditions and lower stream discharge in La Nifa
years. North Florida and the Florida Panhandle area
experience winter maximums in streamflow due to
the frontal systems that impinge southward from the
central United States into northern Florida (Schmidt
et al., 2001). Zorn and Waylen (1997) showed that for
the Santa Fe River, a tributary of the Suwannee River
(Figure 1), mean February streamflow during warm
(E1 Nino) events is nearly twice that of other years.
Additionally, there was a tendency for the winter
peak streamflow to be both greater in magnitude and

longer in duration during El Nifio years. This climate/
streamflow relationship is important for forecasting
seasonal streamflow. For instance, if an ENSO event
develops in the summer/fall seasons of the previous
year, the following year’s winter and spring stream-
flow may be predicted if there is a strong relationship.

The largest recorded floods of the Suwannee River
occurred as the result of the cumulative effects of sev-
eral consecutive broad frontal type rainfall events
over the basin in March and April 1948, March 1959,
and April 1973 (Giese and Franklin, 1996). Historical-
ly, precipitation is greater during the summer season.
However, summer precipitation is due to multiple,
almost daily, convectional storms. Although intense,
these storms are for short durations, and thus the
resulting streamflow (flooding) is significantly less
than that of the long duration frontal storms that
occur during the late winter and early spring seasons.

The ability to provide a long range (three-month to
nine-month) forecast of the winter and spring season
streamflow of the Suwannee River is extremely
important to water resource planners, primarily the
Suwannee River Water Management District.
Although the Suwannee River is not a primary

Florida

100 Miles

Georgia

Florida

Figure 1. An Overview of the Suwannee River Watershed With
Locations of USGS Streamflow Stations SR1 and SR2.
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drinking water supply for the region, numerous com-
munities and residents are adversely affected by
flooding. Additionally, the Suwannee River watershed
is an advanced ecosystem that relies on precipitation
and streamflow to maintain hydroperiods of sensitive
wetlands.

Currently, no streamflow forecast is made for the
Suwannee River. The National Weather Service Office
of Hydrology Advance Hydrologic Prediction Services
does, however, provide a five-day forecast for the
Suwannee and an Ensemble Streamflow Prediction
(ESP) for two adjacent rivers, the Savannah River to
the east and the Apalachicola River to the west. This
forecast is based on data from radar, reservoir releas-
es, river gages, and historical climate data. These
data are input into a physical hydrologic model that
generates the streamflow prediction. ESP forecasts
provide an exceedance probability curve of the pre-
dicted streamflow. An exceedance probability is the
probability that the specified value (i.e., streamflow)
will be equaled or exceeded during a time period. An
exceedance probability forecast can be used depend-
ing on an assumed level of risk. For example, a water
agency may choose to take a 10 percent risk, which
would correspond to a streamflow value that has a 90
percent probability of exceedance. A continuous
exceedance probability forecast can be made by sever-
al methods, including principal component analysis,
regression, and linear discriminant analysis (Piechota
et al., 2001).

The research presented here focuses on identifying
the best climate predictors for Suwannee River
streamflow. The best climate predictors are used to
develop a statistically based exceedance probability
forecast for the winter and spring season streamflow
of the Suwannee River. The research demonstrates
the strength of the ENSO signal for the watershed.

WATERSHED DESCRIPTION

The Suwannee River watershed (Figure 1) has a
total area of approximately 9,950 square miles. The
watershed is heavily forested, and development is pri-
marily low density agriculture. The annual precipita-
tion is approximately 55 inches per year. The
Suwannee River flows through two states, 13 counties
in Florida, and 21 counties in Georgia. Approximately
60 percent of the watershed is within Georgia where
it originates in the Okefenokee Swamp. The river has
three major tributaries — the Alapaha, Little, and
Withlacoochee Rivers. The Suwannee River has been
designated an Outstanding Florida Waters (OFW)
under State of Florida Administrative Code 62-
302.700 (State of Florida, 2003). An OFW is a water
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system designated worthy of special protection
because of its natural attributes. This special designa-
tion is intended to protect existing good water quality.

DATA

The major datasets used to develop the relation-
ships between climate variability and streamflow are
historical streamflow data for the Suwannee River
and historical climate and oceanic data for the Pacific
Ocean.

Streamflow Data

Streamflow data were obtained from the U.S. Geo-
logical Survey (USGS) National Water Information
System (USGS, 2003) for two unimpaired USGS
streamflow stations on the Suwannee River (Figure
1). The average monthly streamflow rate, in cubic feet
per second (cfs) for the winter season (January,
February, and March, or JFM) and the spring season
(April, May, and June, or AMJ) are averaged for each
season and converted into streamflow volumes, in
acre feet, by multiplying the seasonal average rate
values times the total number of days in the season,
with proper conversions. USGS Station 02323500
(referred to in this paper as SR1) is located in the
lower region of the watershed and measures a
drainage area of 9,640 square miles. USGS Station
02315500 (referred to in this paper as SR2) is located
in the upper region of the watershed and measures a
drainage area of 2,430 square miles. Both stations are
unimpaired, and 46 years of monthly streamflow data
covering a period from 1952 to 1997 are used. Persis-
tence (the previous season’s streamflow) is used as a
predictor of future season’s streamflow (the predic-
tand).

Climatic and Oceanic Data

Climate predictors include the MEI, the PDO, and
a series of 12 sea surface temperatures (SSTs) located
in the Pacific Ocean. The climate predictors cover a
period from 1951 to 1996. Like the predictand, aver-
age monthly values of the climate predictors are aver-
aged for each season: JFM, the winter season, AMdJ,
the spring season, July-August-September (JAS), the
summer season, and October-November-December
(OND) the fall season. The (-1) notation represents
the year before the streamflow year, while the (0)
notation represents the streamflow year.
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The MEI is a broad measure of ENSO conditions
and is based on the six observed variables over the
tropical Pacific (Wolter and Timlin, 1998): sea level
pressure, zonal and meridianal components of the
surface wind, sea surface temperature, surface air
temperature, and total cloudiness fraction of the sky.
These observations have been collected and are pub-
lished in the Comprehensive Ocean-Atmosphere Data
Set (NOAA, 2003). Negative values of the MEI repre-
sent the cold ENSO phase (La Nina), while positive
MEI values represent the warm ENSO phase (El
Nifio).

The PDO (Mantua et al., 1997) is a climate phe-
nomenon associated with persistent, bimodal climate
patterns in the northern Pacific Ocean that oscillate
with a characteristic period on the order of 50 years (a
single phase of the PDO will typically persist for
about 25 years). The strength of the PDO is measured
by a climate index comprising sea surface tempera-
tures in the northern Pacific Ocean and acts at longer
time scales than ENSO (Mantua et al., 1997). The
warm phase of the PDO has a positive numerical
index value, while the cold phase has a negative
numerical value.

Twelve Pacific Ocean SST series are used — these
also are used by the Australian Bureau of Meteorolo-
gy (BOM). The SST values are from an experimental
set developed by the BOM and are the first 12 compo-
nents of an empirical orthogonal function (EOF) anal-
ysis of the Pacific and Indian Ocean SSTs
(Drosdowsky and Chambers, 1998). The SST1 series
represents the ENSO cycle with large anomalies (or
high EOF loadings) in the central and eastern tropical
Pacific. The SSTS8 series represents an area near the
eastern coast of Japan; the SST11 series represents
an area in the southern Pacific Ocean near Antarcti-
ca. The other nine SST series represent regions of the
Pacific and Indian Oceans that tend to behave simi-
larly.

Pacific Ocean climate predictors were selected for
several reasons. Although the Suwannee River water-
shed is adjacent to the Gulf of Mexico, the previously
discussed large scale cyclonic (frontal) storms origi-
nate in the Pacific Ocean. During the winter and
spring seasons, these storms move from west to east
across the United States and ultimately release pre-
cipitation on the Suwannee River watershed. ENSO
and PDO are Pacific Ocean climate phenomena and
thus could have a direct impact on precipitation and
resulting streamflow in the Suwannee River water-
shed.

JAWRA

CLIMATE/STREAMFLOW RELATIONSHIPS

Linear correlations between seasonal climate indi-
cators and seasonal streamflow were performed to
determine if there was a significant relationship
between the various predictors (persistence, seasonal
averages of climate) and the predictand (seasonal
averages of streamflow) at various lead times (zero,
three, six, and nine months). The linear correlation
analysis is meant to identify the predictor. The artifi-
cial skill associated with the predictors is addressed
in the Cross Validation Results section through the
use of cross validation. The most significant relation-
ships were selected to be included in the forecast
model. A 0-month lead time predicts streamflow
based on the previous (months zero through three)
season’s climate indicator. A three-month lead time
predicts streamflow based the climate indicator for
months three through six prior to the streamflow sea-
son. The (-1) notation [i.e., JAS(-1)] represents data
from the previous year, and the (0) notation [i.e.,
JFM(0)] represents data from the current year.

Tables 1 through 4 display the seasonal predictors
for the various lead times. For instance, the AMJ(0)
streamflow for SR1 would be based on the best three
predictors noted in Table 2 at various lead times. Note
that only the “best” three predictors are shown in
Tables 1 through 4.

TABLE 1. Summary of the Correlation Results Between
the Winter (JFM) Streamflow at the Suwannee River,
Station 02323500 (SR1) and Climate Indicators.

JFM(-1) AMJ(-1) JAS(-1) ONDC(-1)
MEI 0.30 (100%) 0.42 (100%) 0.41 (5%)
PDO 0.38 (0%)
SST1 0.26 (0%) 0.36 (0%)  0.41 (95%)
SST8 0.32 (100%)
SST11 0.16 (0%) 0.29 (0%)
Persistence 0.24 (0%) 0.47 (0%)
Calibration  9.4% 11.5% 18.7% 17.8%
Cross Val -1.9% -0.5% 11.0% 8.1%

Note: Correlation values (greater than 0.33 are significant at the
99 percent level) and weights (percent in parentheses) used by the
model for the best three predictors are noted. Calibration and cross
validation LEPS scores are shown at the bottom of the table.
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TABLE 2. Summary of the Correlation Results Between
the Spring (AMJ) Streamflow at the Suwannee River,
Station #02323500 (SR1) and Climate Indicators.

AMJ(-1) JAS(-1) OND(-1) JFM(-1)
MEI 0.36 (0%)  0.49 (0%) 0.45 (0%) 0.49 (0%)
SST1 0.50 (100%) 0.56 (100%) 0.50 (100%) 0.44 (0%)
SST8 0.38 (0%) 0.23 (0%)
SST11 0.35 (0%)
Persistence 0.58 (100%)
Calibration  10.9% 14.4% 13.4% 31.8%
Cross Val -0.3% -1.6% -3.2% 19.4%

Note: Correlation values (greater than 0.33 are significant at the
99 percent level) and weights (percent in parentheses) used by the
model for the best three predictors are noted. Calibration and cross
validation LEPS scores are shown at the bottom of the table.

TABLE 3. Summary of the Correlation Results Between
the Winter (JFM) Streamflow at the Suwannee River,
Station 02315500 (SR2) and Climate Indicators.

JFM(-1) AMJ(-1) JAS(-1) ONDC(-1)
MEI 0.31 (100%) 0.45 (100%) 0.43 (0%)
PDO 0.41 (0%)
SST1 0.31 (0%) 0.43 (0%)  0.46 (0%)
SST8 0.28 (0%)
SST11 0.20 (0%) 0.34 (0%)
Persistence  0.18 (100%) 0.24 (100%)
Calibration  7.1% 10.2% 19.0% 25.1%
Cross Val -5.2% -2.7% 2.8% 11.5%

Note: Correlation values (greater than 0.33 are significant at the
99 percent level) and weights (percent in parentheses) used by the
model for the best three predictors are noted. Calibration and cross
validation LEPS scores are shown at the bottom of the table.

The correlation analysis reveals that climate,
specifically ENSO, as measured by the MEI, is a good
predictor of winter and spring season streamflow
(Tables 1 through 4). The SR1 streamflow station is
near the terminus of the Suwannee River and
receives drainage from almost the entire watershed
area (see Figure 1). The JFM(0) streamflow for SR1
was highly correlated with OND(-1) values of Persis-
tence (0.47), MEI (0.41), and SST1 (0.41) (Table 1).
JFM(0) streamflow correlates well with JAS(-1) val-
ues of MEI (0.42), PDO (0.38), and SST1 (0.36). The
trend of MEI and SST1 having the best correlations
for SR1 streamflow continues in Table 2 when pre-
dicting AMJ(0) streamflow. For every seasonal predic-
tion, that is, JFM(0), OND(-1), JAS(-1), and AMJ(-1),
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MEI and SST1 are two of the best three predictors.
The ability to provide a winter and spring forecast is
significant. As previously noted, the winter/spring
seasons are traditionally the seasons of significant
flood events. Based on previous research, ENSO
events, specifically El Nifio, produce significantly
higher amounts of rainfall and resulting streamflow.
The ability to predict streamflow for these seasons
can prove valuable for water resource planners and
affected communities.

TABLE 4. Summary of the Correlation Results Between
the Spring (AMJ) Streamflow at the Suwannee River,
Station 02315500 (SR2) and Climate Indicators.

AMJ(-1) JAS(-1) ONDC(-1) JFM(-1)
MEI 0.31 (100%) 0.45 (100%) 0.43 (0%)
MEI 0.26 (0%) 0.40 (0%) 0.35(0%)  0.39 (0%)
SST1 0.43 (0%) 0.51 (10%) 0.43 (100%) 0.37 (0%)
SST8 0.30 (90%)  0.19 (0%)
SST11 0.41 (100%)
Persistence 0.39 (100%)
Calibration  16.1% 10.8% 8.9% 15.0%
Cross Val 8.0% -9.6% -9.4% -1.0%

Note: Correlation values (greater than 0.33 are significant at the
99 percent level) and weights (percent in parentheses) used by the
model for the best three predictors are noted. Calibration and cross
validation LEPS scores are shown at the bottom of the table.

It is noteworthy that Persistence has the highest
correlation values when predicting both JFM and
AMJ streamflow at SR1 for a zero-month lead time.
However, Tables 1 and 2 show that MEI and SST1
have consistently high correlation values for longer
lead times, while Persistence and other climate pre-
dictors do not. This is not too surprising since it is
typical to have seasonal “memory” in streamflow.
Also, it is noteworthy that for two cases with the
longest lead times — JFM(-1) to predict JFM(0) for
SR1 and AMJ(-1) to predict AMJ(0) for SR2 — SSTS8
and SST11 are used as predictors. As previously
described, these regions are outside the established
ENSO SST region. These regions may influence jet
stream movement or influence the warming and cool-
ing of the equatorial SSTs.

The streamflow ENSO signal is also strong for SR2
(Tables 3 and 4) in the Upper Suwannee River Basin
(Figure 1). For instance, the OND(-1), MEI (0.43), and
SST1 (0.46) have higher correlation values than Per-
sistence (0.24) for the zero-month lead time of JFM(0)
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streamflow (Table 3). Furthermore, the MEI and
SST1 have high correlation values and are used as
two of the best three predictors for every lead time for
AMJ(0) streamflow.

The strong ENSO signal is most likely due to the
abundance of large frontal storms during the winter
and spring seasons, while the summer and fall sea-
sons are dominated by convectional storms. Florida’s
winter and spring season precipitation is dominated
by large and sometimes slow moving frontal storms
that originate in the Pacific Ocean and move from
west to east across the United States. The “track” or
traditional path that these storms travel across the
United States is altered by ENSO activity. This leads
to greater activity (i.e., enhanced subtropical jet) and
more precipitation during El Nino years. Based on the
historical flooding of the Suwannee River during the
winter and spring seasons, the strong ENSO signal,
and the need to provide a forecast for these seasons,
this research focuses on using climate as a predictor
of winter and spring seasonal streamflow volumes.
Additional analysis of correlations of climate (and
Persistence) with summer and fall streamflow at vari-
ous lead times (zero, three, six, and nine months) did
not result in strong correlations and are not presented
here.

The streamflow forecast described in the following
sections requires three variables as a predictor of
streamflow. From the correlation analysis and the
values of the predictors shown in Tables 1 through 4,
MEI and SST1 are two of the three predictors used for
every forecast with the exception of the nine-month
lead time for the JFM forecast for both SR1 and SR2.
The third predictor is PDO, SST8, SST11, or Persis-
tence.

FORECAST METHODOLOGY

The streamflow forecast developed is a continuous
exceedance probability curve that can be used for any
assumed risk level and was developed by Piechota et
al. (2001). The “no skill/climatology” forecast curve is
generated by dividing the rank of each historical
value by the total number of years in the record. In
developing the streamflow forecast for this study,
three streamflow forecast models, each using a differ-
ent predictor, are combined to form a final combina-
tion forecast. With the exception of the nine-month
lead time forecast of the JFM streamflow, the first
model uses the MEI, and the next model uses SST1 as
predictor variables. The third and final forecast model
uses the best predictors (PDO, SST8, SST11, or Per-
sistence) of streamflow at each station.
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Two advantages are found with this method: it con-
siders the continuous relationship between the predic-
tand and the predictor, and it does not assume a
particular model structure. It suffers, however, from
its semi-empiricism — fitting the model to the data
points assumes that the historical data represents the
entire population. A detailed description of the
methodology and model can be found in Piechota et
al., (1998, 2001). A brief description of the model (for
one predictor) is provided below.

1. The climate predictor values (P;) for each year
and the corresponding streamflow predictand values
(Q;) for each year are compiled.

2. The streamflow values (Q;) are ranked in
ascending order, and the corresponding climate pre-
dictor (P;) for the corresponding year of the stream-
flow are noted.

3. The first data point for analysis occurs immedi-
ately after the five lowest streamflow values (Q;), and
the last point for analysis occurs immediately prior to
the five highest streamflow values (Q;). This is
required since a minimum of five values are needed to
generate a probability density function.

4. The first data point for analysis is the sixth-
ranked streamflow value (lowest to highest) based on
Step 3 above. Using the kernel density estimator (Sil-
verman, 1986; Piechota et al., 1998), a probability
density function is developed for all climate predictor
values below the first data point, and a probability
function is developed for all climate predictor values
above the first data point.

5. A unique probability value is determined for
each predictor value, given the sixth-ranked stream-
flow value. These values are single points on the
exceedance probability curve (Probability versus
Streamflow). The procedure is then repeated for the
seventh-ranked streamflow value and so on.

6. An exceedance probability is then determined for
each predictor value. The forecast curve will repre-
sent the probability of exceeding a value of stream-
flow, based on the value of the predictor.

7. The final exceedance probability forecast is
found by combining the three individual forecasts into
one combination forecast that has better overall skill.
The combination forecast is found by applying
weights a, b, and ¢ to the three models so that the
weights add up to 1. The optimal forecast is found by
applying more weight to individual forecasts that bet-
ter predicts streamflow and less weight to poor indi-
vidual forecasts. These optimal weights are
determined by an optimization procedure that evalu-
ates the Linear Error in Probability Space (LEPS)
score for all possible combinations, using weighting
increments of 0.02 in which the weights vary between
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0 and 1 for each model. The final combination forecast
is the model with the highest LEPS score.

The skill of the forecast was measured using the
LEPS score. This score is a measure of skill that was
developed originally to assess the position of the fore-
cast and the position of the observed values in the
cumulative probability distribution (nonexceedance
probability). The LEPS score can be used for continu-
ous and categorical variables (Ward and Folland,
1991; Potts et al., 1996). The skill associated with
each individual forecast and the final combination
forecast are calculated for calibration and cross vali-
dation analyses. The LEPS score for the calibration
analysis does not provide an independent skill score
because it is based on the same data on which the
model was calibrated.

RESULTS

The model described in the previous section was
applied to two unimpaired streamflow stations (SR1
and SR2) of the Suwannee River. A seasonal stream-
flow forecast was made using the “best” three predic-
tors (MEI, PDO, SST1, SST8, SST11, or Persistence)
to forecast streamflow for zero-, three-, six-, and nine-
month lead times (Tables 1 through 4). For example,
the winter JFM(0) streamflow at SR1 and SR2 is fore-
casted using the previous year’s summer JAS(-1) val-
ues of MEI, PDO, and SST1 (see Table 1). A summary
of the results is presented in Tables 1 through 4,
which include: (a) the correlation values for the “best”
three predictors at the various lead times (zero, three,
six, and nine months); (b) the optimized weights (0 to
100 percent) used for the “best” three predictors when
all the data are used to calibrate the model at the var-
ious lead times; and (¢) the LEPS score for the cali-
bration and cross validation at the various lead times.

Calibration Results

The calibration results using the “best” three pre-
dictors (climate and/or persistence) of winter and
spring streamflow (based on correlation values) for
Stations SR1 and SR2 of the Suwannee River are
shown in Tables 1 through 4. Calibration uses all the
data to calibrate the weights and then computes the
skill based on all the data. The weights in Tables 1
through 4 suggest a strong ENSO signal at Station
SR1. For three of the four cases with a zero-month
lead time, Persistence was used as the main predictor.
For the eight lead times (four each to predict JFM
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and AMJ), MEI and/or SST1 were used as the predic-
tor six times.

The LEPS scores for the calibration analyses were
greater than 10 percent in 13 of the 16 simulations
(Tables 1 through 4). A 10 percent or greater value is
generally considered a LEPS score with good skill. As
expected, the zero-month lead time generally provided
the highest calibrated LEPS scores, ranging from a
low value of 15.0 percent to a high value of 31.8 per-
cent. The summer JAS(-1) season provided consistent-
ly higher LEPS scores when predicting both JFM(0)
and AMJ(0) streamflow. The summer season is the
traditional time frame in which Pacific Ocean climate
phenomena, most notably ENSO, develop. The previ-
ously established strong signal between ENSO and
streamflow in the Suwannee River could possibly vali-
date the higher summer LEPS scores. The develop-
ment of an El Nifio during the summer time frame
would result in higher streamflow during the follow-
ing year's winter and spring seasons, and the develop-
ment of a La Nifia would result in a lower streamflow.

Cross Validation Results

Cross validation provides a more independent
assessment of the forecast skill and of the weights
applied to each model (Michaelsen, 1987; Elsner and
Schmertmann, 1994). Cross validation allows the
model to remove a year, calibrate the model, and then
test the model on the year that was removed. This
procedure is repeated for all years. The use of cross
validation eliminates spurious predictors and artifi-
cial skill. The LEPS score for the cross validation
analyses drops considerably when compared to the
LEPS score for the calibration analysis. Tables 1
through 4 indicate that the LEPS scores for the cross
validation analyses were greater than 10 percent in
three of the 16 simulations. However, it should be
noted that for the lead times of three, six, and nine
months, the highest cross validation LEPS score (11.0
percent) determined was JAS(-1), with a three-month
lead time, to predict JFM(0) for SR1. For this predic-
tion, 100 percent of the weight was placed on the
MEL

For all lead times (zero, three, six, and nine
months), the highest reported cross validation LEPS
score (19.4 percent) was JFM(0), a zero-month lead
time, to predict AMJ(0) for SR1. For this prediction,
100 percent of the weight was placed on persistence.
Based on these results, it may be possible to predict
JFM and AMJ streamflow for SR1 by first using sum-
mer JAS(-1) MEI to forecast JFM(0) streamflow and
then using JFM(0) persistence to forecast AMJ(0)
streamflow.
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El Nirio and La Nifia Years

To further examine the strength of the ENSO sig-
nal, exceedance probability streamflow forecasts were
developed for El Nifio and La Nina events between
1951 and 1996. Based on information obtained from
the National Oceanic and Atmospheric Administra-
tion (NOAA) Climate Diagnostics Center, for this
study, El Nifio years are 1957, 1965, 1972, 1982, 1986,
and 1991, and La Nina years are 1954, 1964, 1970,
1973, 1975, and 1988. Due to El Nifio and La Nina
events transgressing multiple calendar years, the
selection of the years could vary. SST data for 1997
were unavailable, and thus no 1997 El Nino forecast
is provided. Additionally, hurricane related precipita-
tion during the period of study was reviewed. For the
period of 1950 to 1997, Florida experienced 23 hurri-
canes. However, none of these hurricanes contributed
precipitation during OND for the El Nifno years
selected. The streamflow forecasts shown here use

summer JAS(-1) MEI (three-month lead time) of the
El Nifio (or La Nina) years to predict JFM(0) stream-
flow for SR1 streamflow station.

Figures 2 and 3 show the exceedance probability
forecasts for the six El Nifio and six La Nina events
along with the previously discussed climatology fore-
cast. The observed JFM(0) streamflow values (dark
circles) are displayed and the cross validation LEPS
scores for each event are shown in parentheses. In
Figure 2, each El Nino forecast is greater than the cli-
matology forecast. In the La Nina events (see Figure
3), each forecast is lower than the climatology fore-
cast. This is consistent with the previously stated
effect of ENSO, that is, greater streamflow during El
Nifio, lesser streamflow during La Nina. Observed
streamflow values show that four out of six El Nifo
events resulted in above normal streamflow, while
five out of six La Nifa events resulted in below nor-
mal streamflow.
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Figure 2. Exceedance Probability Forecasts for El Nifio Years Between 1951 and 1996 for the Suwannee River, Station
02323500 (SR1), for Winter [JEM(0)], Streamflow Using Summer [JAS(-1)], Climate Predictors. Observed streamflow
values (dark circles), climatology forecast, and cross validation LEPS scores (percent) are also provided.
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Figure 3. Exceedance Probability Forecasts for La Nifia Years Between 1951 and 1996 for the Suwannee River, Station No.
02323500 (SR1), for Winter [JFM(0)] Streamflow Using Summer [JAS(-1)] Climate Predictors. Observed streamflow
values (dark circles), climatology forecast, and cross validation LEPS scores (percent) are also provided.

Cross validation LEPS scores are significantly
higher for El Nino/La Nina years, again showing the
strong ENSO signal. These results can be used to pre-
dict winter/spring streamflow in ENSO years by first
identifying in the summer JAS(-1) that an El Nifio or
La Nina event is occurring, based on the average MEI
value. The model can produce an exceedance probabil-
ity forecast for JFM(0) using these climate data.
AMJ(0) can then be forecasted based on persistence,
that is, the JFM(0) streamflow.

CONCLUSIONS

A method for developing an exceedance probability
streamflow forecast using multiple predictors is pre-
sented here and applied to the Suwannee River.
Because the exceedance probability forecast is contin-
uous, it allows the forecast user to evaluate the fore-
cast amount of streamflow at different levels of risk.
For instance, past studies show that El Nino events
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produce more rainfall and more streamflow, while La
Nina events produce less rainfall and less streamflow.
Referring to Figure 2, JFM(0) streamflow for an El
Nifo year can be forecast based on the JAS(-1) value
of the predictor MEI because 100 percent of the
weight was placed on this predictor by the model (see
Table 1). Although the climatology forecast for the
median (50 percent) exceedance probability shows a
value of approximately 2,200 acre-feet, the model’s
forecasts range from approximately 2,400 to 3,000
acre-feet. The seasonal streamflow for four of the six
El Nino events for this period of study exceeded the
climatology forecast. These forecasts can provide
water resource planners and local communities with
sufficient lead times to prepare for greater flows and
possible flooding of the Suwannee River. The opposite
occurs for La Nifna years (see Figure 3). While the cli-
matology forecast for the average (50 percent)
exceedance probability again shows a value of approx-
imately 2,200 acre-feet, the model’s forecasts range
from approximately 1,000 to 1,500 acre-feet. The sea-
sonal streamflow for five of the six La Nina events for
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this period of study were below the climatology fore-
cast. Again, these forecasts can provide hydrologists
and biologists the necessary lead time to institute
conservation practices to prevent negative impacts to
wetlands and environmentally sensitive areas. Low
flows of the Suwannee River will likely result in
increased concentrations of pollutants and contami-
nants due to lack of dilution.

The above application of the forecasting generally
shows that ENSO is the most important predictor for
winter and spring streamflow. There is potential for
making streamflow forecasts with a six-month lead
time using ENSO indicators and persistence. These
forecasts are especially useful to water resources
planners. The ability to predict above normal (flood)
years can provide communities the necessary lead
time to protect life and property. The ability to predict
below normal (drought) years will provide hydrolo-
gists the necessary lead time to protect sensitive wet-
lands and protect endangered and threatened species.
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